On a Conjecture on Exponential Diophantine Equations
نویسندگان
چکیده
We deal with a conjecture of Terai (1994) asserting that if a, b, c are fixed coprime integers with min(a, b, c) > 1 such that a+b = c for a certain odd integer r > 1, then the equation a + b = c has only one solution in positive integers with min(x, y, z) > 1. Co-operation man-machine is needed for the proof.
منابع مشابه
On the Diophantine Equation x^6+ky^3=z^6+kw^3
Given the positive integers m,n, solving the well known symmetric Diophantine equation xm+kyn=zm+kwn, where k is a rational number, is a challenge. By computer calculations, we show that for all integers k from 1 to 500, the Diophantine equation x6+ky3=z6+kw3 has infinitely many nontrivial (y≠w) rational solutions. Clearly, the same result holds for positive integers k whose cube-free part is n...
متن کاملOn a Few Diophantine Equations, in Particular, Fermat’s Last Theorem
This is a survey on Diophantine equations, with the purpose being to give the flavour of some known results on the subject and to describe a few open problems. We will come across Fermat’s last theorem and its proof by Andrew Wiles using the modularity of elliptic curves, and we will exhibit other Diophantine equations which were solved à la Wiles. We will exhibit many families of Thue equation...
متن کاملOpen Diophantine Problems
Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s ...
متن کاملA generalized Ramanujan-Nagell equation related to certain strongly regular graphs
A quadratic-exponential Diophantine equation in 4 variables, describing certain strongly regular graphs, is completely solved. Along the way we encounter different types of generalized Ramanujan-Nagell equations whose complete solution can be found in the literature, and we come across a problem on the order of the prime ideal above 2 in the class group of an imaginary quadratic number field, w...
متن کاملClass Numbers of Real Quadratic Orders, Generalized Fermat Numbers, and Exponential Diophantine Equations
We examine criteria for the existence of cyclic subgroups of the class groups of arbitrary real quadratic orders via the solvability of certain exponential Diophantine equations. This extends numerous results in the literature including past work by this author over the past 25 years.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008